Electronic Structure Calculations in Plane-wave Codes without Diagonalization

نویسندگان

  • LAURENT O. JAY
  • JAMES R. CHELIKOWSKY
چکیده

We present an algorithm to reduce the computational complexity for plane-wave codes used in electronic structure calculations. Our proposed algorithm avoids the diagonalization of large Hermitian matrices arising in such problems. The computational time for the diagonalization procedure typically grows as the cube of the number of atoms, or the number of eigenvalues required. To reduce this computational demand, we approximate directly in a certain subspace the occupation operator corresponding to the eigenvectors associated with the occupied states, without actually computing these eigenvectors. A smoothed Chebyshev-Jackson expansion of the Heaviside function of the Hamiltonian matrix is used to represent the occupation operator. This procedure requires only matrix-vector products and is intrinsically parallelizable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Structure Calculations for Plane-wave Codes without Diagonalization

We present an algorithm to reduce the computational complexity for plane-wave codes used in electronic structure calculations. The proposed algorithm avoids the diagonalization of large Hermitian matrices arising in such problems. The computational time for the diagonalization procedure typically grows as the cube of the number of atoms, or the number of eigenvalues required. To reduce this com...

متن کامل

Improving the Efficiency of FP-LAPW Calculations

The full-potential linearized augmented-plane wave (FP-LAPW) method is well known to enable most accurate calculations of the electronic structure and magnetic properties of crystals and surfaces. The implementation of atomic forces has greatly increased its applicability, but it is still generally believed that FP-LAPW calculations require substantial higher computational effort compared to th...

متن کامل

First Principle Study of MC (M= Al, Ga, and In) at Equilibrium and under Negative Stress

The electronic and magnetic properties of the hypothetical compounds of MC (M=Al, Ga and In) are investigated by using first-principle calculations and pseudopotential plane wave self-consistent field method based on density functional theory. In order to find the most stable phase of MC (M=Al, Ga and In), we study them in zinc-blende (ZB), rocksalt (RS), wurtzite and NiAs crystal structures. W...

متن کامل

Iterative diagonalization in augmented plane wave based methods in electronic structure calculations

Due to the increased computer power and advanced algorithms, quantum mechanical calculations based on Density Functional Theory are more and more widely used to solve real materials science problems. In this context large nonlinear generalized eigenvalue problems must be solved repeatedly to calculate the electronic ground state of a solid or molecule. Due to the nonlinear nature of this proble...

متن کامل

Density Functional Studies on Crystal Structure and electronic properties of Potassium Alanate as a candidate for Hydrogen storage

Potassium Alanate is one of the goal candidates for hydrogen storage during past decades. In this report, initially the Density Functional Theory was applied to simulate the electronic and structural characteristic of the experimentally known KAlH4 complex hydride. The relaxation of unit cell parameters and atomic positions was performed until the total residual force reduced less than 0.001ev ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007